

Continuous Delivery &
Relational Databases

Adam Szmigin – adam@xsco.net
11-Nov-2014

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

mailto:adam@xsco.net

Why This Talk?

Motivation:
● Promote continuous delivery and automation
● Provide a standard way of working with RDBMS
● Hairy approaches to DB deployment still persist

Inspiration:
● dbdeploy – http://dbdeploy.com
● Flyway – http://flywaydb.org
● Red Gate – http://red-gate.com/products/dlm

http://dbdeploy.com/
http://flywaydb.org/
http://red-gate.com/products/dlm

Continuous Delivery:
Essential Requirements

● Purpose: Continuously deliver new versions of
software, measure value to your organisation.

● An automated deployment pipeline enables
changes to be realised & tested with low effort.

Continuous Delivery Visualisations
by Nhan Ngo

Database Schema Management:
Essential Requirements

● Non-destructively upgrade an existing database
to the next version

● Roll back an existing database to a prior version
in the event of a problem

● Create a new database from scratch for testing
● Awareness of what has already been deployed
● Test whether deployment was successful or not
● Manage non-linear development

Typical Approach

● Upgrade handled by scripts written and deployed
piecemeal by developers

● Roll-back rarely tested; rely on backup/restore
● Database schema is not under source control; new

environments are copied from existing
● Awareness of what has been deployed is not recorded

explicitly
● Success of deployment based on visual examination

by person running scripts on target environment
● Non-linear development managed by crossing fingers

Commonly-Seen Problems

● Deployment issues past the development phase
– The order of scripts used for a release to SIT or UAT

may not match the order used during development

● Schema of shared development environments in
unknown state

● Low confidence in roll-backs
● Feedback too late to developers
● Obstructions to automation

Better Ideas Seen In The Wild

● Numbering scripts to identify strict order
● Full schema under source control; makes it easy to

see per-object changes
● Record of which scripts have been run in a dedicated

table in the database
● Tools to run certain numbered scripts depending on

what is already in a target database

But not quite enough for continuous delivery...

A Gold Standard?

● Source control is the master:
– Entire database schema

– All incremental changes (upgrade, rollback)

● Changelog explicitly recorded in the database
– Full history of changes

● Fully-automated install, upgrade, roll-back
– Including fully-automated testing

● Full support for non-linear development
– Recalling that deployment of scripts is always linear

Some Non-Functional Desires...

● Small, lightweight
● Low migration effort
● Works across database technologies
● Works across operating systems
● Natural fit whether writing for JVM, CLR, or native
● Programmatic API for customised integration
● Free (as in beer) software
● Free (as in speech) software

Can something be built?

Can something be built?

Enter dbmig...

Semantic Versioning, aka “SemVer”

● Formal, comprehensive approach to versioning
– See details on http://semver.org

– Major, minor, patch, pre-release, build metadata

● Examples:
– 3.42.1

– 12.0.0-alpha

– 1.3.6-nightly+svn.39275

● Versioning scheme of choice for dbmig:
– <Major>.<Minor>.<Patch>+script.<n>

http://semver.org/

Source Control is the Master

● Install
– From no version to a

version

● Upgrade
– From one version to

another version

● Latest
– From nothing to the

bleeding edge,
no version control (!)

MyDb/
 install/
 1.2.3/
 052_inst.sql
 upgrade/
 1.3.0/
 001_foo.sql
 002_bar.sql
 latest/
 ...

Version 1.3.0+script.2

Changelog Table in the DB

id applied action from to script_hash

1 3-Apr 11:59 install (null) 1.2.3+script.52 6f3e559bbd...

2 3-Apr 12:04 upgrade 1.2.3+script.52 1.3.0+script.1 4355a46b19...

3 4-Apr 09:38 upgrade 1.3.0+script.1 1.3.0+script.2 53c234e5e8...

4 4-Apr 15:01 rollback 1.3.0+script.2 1.3.0+script.1 53c234e5e8...

● A hash is kept of all scripts
– Can be used to check whether a script in the

repository on disk has changed since deployment

Fully-Automated Deployment

$ cd ~/path/to/my/database/repository

$ dbmig --target=<conn_str> show
Version installed: 1.3.0+script.1

$ dbmig --target=<conn_str> migrate
Run upgrade script 1.3.0/002_bar.sql? [yn] y
Upgraded to 1.3.0+script.2

$ dbmig --target=<conn_str> migrate
 --version=1.2.3+script.52
Run rollback script 1.3.0/002_bar.sql? [yn] y
Run rollback script 1.3.0/001_foo.sql? [yn] y
Rolled back to 1.2.3+script.52

Invariants to Test Consistency

● With fully-automated deployment, invariants can be
continuously verified by automated build software:

Install Script + Upgrade Scripts
= Latest

Install Script + Upgrade Scripts + Rollback Scripts
= Install Script

Non-Linear Development

Developer's local environment:

● Install: 1.2.3+script.52

● Upgrade: 1.3.0+script.1

● Upgrade: 1.3.0+script.2

Continuous build server:

● Install: 1.2.3+script.52

● Upgrade: 1.2.4+script.1

● Upgrade: 1.3.0+script.1

● Upgrade: 1.3.0+script.2

● Let's assume an emergency patch release is
made and checked into source control...

● The conflict can be identified by checking the
source code repository against the changelog

Demo time...

dbmig Project Info

● Website: http://dbmig.xsco.org
● Written in C++11, using STL, Boost
● Currently tested on PostgreSQL

– Uses cross-platform DB library SOCI

– Help wanted to test SQL Server, Oracle

● Currently tested on GNU/Linux
– Cross-platform code, built using GNU Autotools

– Help wanted to test Windows, Mac builds

http://dbmig.xsco.org/

Q & A

